
An introduction to parsing

Victor Eijkhout

August 2004

1 Levels of parsing

A compiler, or other translation software, has two main tasks: checking the input for va-
lidity, and if it is valid, understanding its meaning and transforming it into an executable
that realizes this meaning. We will not go into the generation of the executable code here,
but focus on the validity check and the analysis of the meaning, both of which are parsing
tasks.

A parser needs to look at the input on all sorts of levels:

• Are all characters valid – no 8-bit ascii?
• Are names, or identifiers, well-formed? In most programming languagesa1 is a

valid name, but1a is not. By contrast, in TEX a name can only have letters, while in
certain Lisp dialects!!important_name!! is allowed.

• Are expressions well-formed? An arithmetic expression like5/*6- does not make
sense, nor doesCALL)FOO(in Fortran.

• If the input is well-formed, are constraints satisfied such as that every name that is
used is defined first?

These different levels are best handled by several different software components. In this
chapter we will look at the two initial stages of most translators1.

1. First of all there is the lexical analysis. Here a file of characters is turned into a
stream of tokens. The software that performs this task is called a tokenizer, and it can
be formalized. The theoretical construct on which the tokenizer is based is called a
‘Finite State Automaton’.

2. Next, we need to check if the tokens produced by the tokenizer come in a legal
sequence. For instance, opening and closing parentheses need to come in matched
pairs. This stage is called the syntactical analysis, and the software doing this is
called a parser.

1. I will use the terms ‘translating’ and ‘translater’ as informal concepts that cover both compilers and inter-
preters and all sorts of mixed forms. This is not the place to get philosophical about the differences.

1

2 Very short introduction

A language is a set of words (strings) over an alphabet, that satisfies certain properties. It
is also possible to define a language as the output of a certain type of grammar, or as the
strings accepted by a certain type of automaton. We then need to prove the equivalences of
the various formulations. In this section we briefly introduce the relevant concepts.

2.1 Languages

A language is a set of words that are constructed from an alphabet. The alphabet is finite
in size, and words are finite in length, but languages can have an infinite number of words.
The alphabet is often not specified explicitly.

Languages are often described with set notation and regular expressions, for example ‘L =
{anb∗cn|n > 0}’, which says that the language is all strings of equal number ofas andcs
with an arbitrary number ofbs in between.

Regular expressions are built up from the following ingredients:

α|β either the expressionα or β
αβ the expressionα followed by the expressionβ
α∗ zero or more occurrences ofα
α+ one or more occurrences ofα
α? zero or one occurrences ofα

We will see more complicated expressions in thelexutility.

2.2 Automata

A description of a language is not very constructive. To know how to generate a language
we need a grammar. A grammar is a set of rules or productionsα → β that state that,
in deriving a word in the language, the intermediate stringα can be replaced byβ. These
strings can be a combination of

• A start symbolS,
• ‘Terminal’ symbols, which are letters from the alphabet; these are traditionally ren-

dered with lowercase letters.
• ‘Non-terminal’ symbols, which are not in the alphabet, and which have to be replaced

at some point in the derivation; these are traditionally rendered with uppercase let-
ters.

• The empty symbolε.

Languages can be categorized according to the types of rules in their grammar:

type 0 These are called ‘recursive languages’, and their grammar rules can be of any form:
both the left and right side can have any combination of terminals, non-terminals,
andε.

type 1 ‘Context-sensitive languages’ are limited in thatε can not appear in the left side of
a production. A typical type 1 rule would look like

αAβ → γ
which states thatA, in the context ofαAβ, is replaced byγ. Hence the name of this
class of languages.

2

type 2 ‘Context-free languages’ are limited in that the left side of a production can only
consist of single non-terminal, as inA → γ. This means that replacement of the
non-terminal is done regardless of context; hence the name.

type 3 ‘Regular languages’ can additionally have only a single non-terminal in each right-
hand side.

In the context of grammars, we use the notationα ⇒ β to indicate that the stringβ as
derived fromα by a single application of a grammar rule;α ⇒∗ β indicates multiple
rules. For example,αAβ ⇒ αBγ indicates that the rhs string was derived from the lhs by
replacingAβ with Bγ.

2.3 Automata

Corresponding to these four types of formal languages, there are four types of ‘automata’:
formal machines that can recognize these languages. All these machines have a starting
state, they go from one state to another depending on the input symbols they encounter, and
if they reach the end state, the string is accepted as being in the language. The difference
between the different types of automata lies in the amount of memory they have to store
information. Very briefly the classes of automaton are:

for type 3 Finite State Automata. These machines have no memory. They can only make
transitions.

for type 2 Pushdown Automata. These machines have a stack where they can store infor-
mation; only the top of the stack can be inspected.

for type 1 Linear Bounded Automata. These have random-access memory, the size of
which is equal to (a linear function of) the size of the input.

for type 0 Turing machines. These have an unbounded tape for storing intermediate cal-
culations.

Lexical analysis.

The lexical analysis phase of program translation takes in a stream of characters and outputs
a stream of tokens.

A token is a way of recognizing that certain characters belong together, and form an object
that we can classify somehow. In some cases all that is necessary is knowing the class, for
instance if the class has only one member. However, in general a token is a pair consisting
of its type and its value. For instance, in1/234 the lexical analysis recognizes that234 is
a number, with the value234. In an assignmentabc = 456 , the charactersabc are rec-
ognized as a variable. In this case the value is not the numeric value, but rather something
like the index of where this variable is stored in an internal table.

Lexical analysis is relatively simple; it is performed by software that uses the theory of
Finite State Automata and Regular Languages; see section 3.

Remark. It might be tempting to consider the input stream to consist of lines, each of
which consist of characters, but this does not always make sense. Programming languages

3

Dave Elliot
Inserted Text

Edited by Foxit ReaderCopyright(C) by Foxit Software Company,2005-2007For Evaluation Only.

such as Fortran do look at the source, one line at a time; C does not. TEX is even more
complicated: the interpretation of the line end is programmable.2

3 Finite state automata and regular languages

Regular languages are the strings accepted by a particularly simple kind of automaton.
However, we initially define these languages – non-constructively – by so-called ‘regular
expressions’.

3.1 Definition of regular languages

A regular language over some alphabet can be described by a ‘regular expression’.

• ε denotes the empty language: the language with no words in it.
• If a is a letter in the alphabet, thena denotes the language{a}.
• If α andβ are expressions denoting regular languagesA andB, then

– αβ or α · β denotes the language{xy|x ∈ A, y ∈ B}.
– α|β denotes the languageA ∪B.
– α∗ denotes the language∪n≥0A

n.
• Parentheses can be used to indicate grouping:(α) simply denotes the languageA.

Any regular expression built up this way describes a regular language.

3.2 Non-deterministic automata

A Finite State Automaton is an abstract machine that recognizes (‘accepts’) words from a
language:

• The automaton is initially in a beginning state;
• every letter or ‘symbol’ from the input word causes unambiguously a transition to

the same or to a next state; if no transition is defined for a given combination of
current state and input symbol, then the word is not in the language;

• a word is accepted if the last symbol causes a transition to a state that is marked as
an accepting state.

Formally, we can define a FSA as the combination of

• A setS of states, with a starting stateS0 and a set of final states.
• A finite input alphabetI.
• A transition diagramI × S → S that specifies how the combination of a state and

an input symbol effects a transition to a new state.

This kind of automaton is deterministic in the sense that every transition from one state
to the next is deterministically made by accepting an input symbol. However, in the con-
text of lexical analysis, the so-called ‘non-deterministic FSA’ is more convenient. A non-
deterministic FSA (also NFA) differs in two ways from the deterministic type:

2. Ok, if we want to be precise, TEX does look at the input source on a line-by-line basis. There is something
of a preprocessorbefore the lexical analysis which throws away the machine-dependent line end, and replaces it
with the TEX-defined one.

4

• An NFA can make spontaneous transitions from one state to another. If an automaton
has such a transition, we can say that this is caused by the symbolε, and this is called
anε-transition.

• An NFA can be ambiguous in that there can be more than one possible transition for
a given state and input symbol.

Exercise 1. Show that the second condition in the definition of an NFA can
be reduced to the first. Is a reduction the other way possible?

3.3 The NFA of a given language

We now construct a nondeterministic automaton that accepts a regular language.

• The automaton that accepts the expressionε has a single transition from the starting
state to the accepting state.

0 1

ε

• The automaton that accepts the expressiona has a single transition from the starting
state to the accepting state.

0 1

a

• If A andB are automata accepting the languagesA andB with expressionsα andβ,
then
– the languageAB is accepted by the automaton that has the states and transition

of both automata combined, with the initial state ofA as the new initial state,
the accepting state ofB as the new accepting state, and anε-transition from the
accepting state ofA to the initial state ofB;

0 1

0 1

A

B

ε

– the languageA ∪B is accepted by an automaton with a new starting state that
hasε-transitions to the initial states ofA andB;

0 1

0 1

s s

A

B

ε

ε

ε

ε

– the expressionα∗ is accepted byA modified such that the initial state is also
the accepting state, or equivalently by adding anε-transition from the starting
to the accepting state, and one the other way around.

5

3.4 Examples and characterization

Any language that can be described by the above constructs of repetition, grouping, con-
catenation, and choice, is a regular language. It is only slightly harder to take a transition
diagram and write up the regular expression for the language that it accepts.

An informal way of characterizing regular languages is to say that FSAs ‘do not have
memory’. That means that any language where parts of words are related, such as{anbm|
m ≥ n}, can not be recognized by a FSA. Proof: suppose there is a recognizing FSA.
When it first accepts ab, it can come from only a fixed number of states, so that limits the
information it can carry with it.

We can give a slightly more rigorous proof if we first characterize regular languages:

Theorem 1 Let L be a regular language, then there is an n so that all strings α in L longer
than n can be written as α = uvw, such that for any k uvkw is also in the language.

Using this theorem it is easy to see that the above language can not be regular.

This theorem is proved by observing that in order to accept a sufficiently long string the
same state must have been encountered twice. The symbols accepted in between these
encounters can then be repeated arbitrarily many times.

3.5 Deterministic automata

Non-deterministic automata, as defined above, are easy to define. However, from a practical
point of view they do not look very constructive: a string in the language is accepted by
the automaton if there isany sequence of transitions that accepts it. Fortunately, for every
NFSA, there is a DFSA that accepts the same language.

Sometimes it is easy to derive the DFSA. Consider the languagea∗|b∗ and the automaton

0

1

2

ε

ε

b

a

The following automaton is derived by splitting off onea and oneb:

6

0

1

2

a

b
b

a

This next example leads up to what happens in the lexical analysis of a compiler:

0

1

6

2

7

5
ε

ε A–Z

B E–G–I
. . .

N

a–z

The resulting DFA is a bit more messy:

0

1

6

2

7

3

8

B

¬B

E

¬E

G

¬G

A–Z A–Z A–Z

text. . .

. . .

(and we can collapse states6 . . . to one.)

Sketch of the proof: the states of the DFSA are sets of states of the NFSA. The states
we are actually interested in are defined inductively, and they satisfy the property that
they are closed underε-transitions of the original NFSA. The starting state contains the
original starting state plus everything reachable withε-transitions from it. Given a state
of the DFSA, we then define more states by considering all transitions from the states
contained in this state: if there is a transition based on a symbolx, the next state has all
states reachable from this state by acceptingx, plus any subsequentε-transitions.

Since the number of subsets of a finite set of states is finite, this will define a finite number
of states for the DFSA, and it is not hard to see that an accepting sequence in the one
automaton corresponds to an accepting sequence in the other.

7

3.6 Equivalences

Above, we saw how the NFA of a regular language is constructed. Does every NFA corre-
spond to a regular language, and if so, how can that be derived? We make a detour by first
talking about the equivalence of automata and grammars.

Let X be a string in the languageL of a DFA, and suppose that aftert transitions statei
is reached. That means we can splitX = Xi(t)Yi. This is merely one of the strings that
is in statei at timet; let us call the set of all these stringsLi(t). Let us call the set of all
strings that, given a statei, bring the automaton to an accepting stateRi. This set is clearly
not dependent ont. DefiningLi = ∪∞t=0Li(t), we have thatL = ∪m

i=1LiRi wherem is the
number of states.

This inspires us to tackle the derivation of a grammar by describing the production of
the remainder stringsRi. Suppose the automaton is in statei; we will derive the produc-
tionsNi → If statei is an accepting state, there will be a productionNi → ε; for all
other transitions by a symbolx to a stateNi′ we add a productionNi → xNi′ . It is easy
to see the equivalence of strings accepted by the DFA and derivations of the grammar thus
constructed.

Going the other way, constructing an automaton from a grammar runs into a snag. If there
are productionsNi → aNi′ andNi → aNi′′ , we can of necessity only construct an NFA.
However, we know that these are equivalent to DFAs.

We note that the grammars used and constructed in this – informal – proof are right-
recursive, so they generate precisely the regular languages.

Exercise 2. Show how this proof can be modified to use left-recursive gram-
mars, that is, grammars that have productions of the formNi → Ni′a.

4 Lexical analysis with FSAs

A FSA will recognize a sequence of language elements. However, it’s not enough to simply
say ‘yes, this was a legal sequence of elements’: we need to pass information on to the next
stage of the translation. This can be done by having some executable code attached to
the accepting state; if that state is reached, the code snippet tells the next stage what kind
of element has been recognized, and its value. This value can be a numerical value for
numbers recognized, but more generally it will be an index into some table or other.

Formally, we can extend the definition of a FSA (section 3.2) by the addition of an output
alphabetO and an output tableI×S → O. This models the output of a symbol, possiblyε,
at each transition.

Exercise 3. One could also define the output with a mappingS → O. Show
that the definitions are equivalent.

An FSA is not enough to recognize a whole language, but it can recognize elements from a
language. For instance, we can build multiple FSAs for each of the keywords of a language
(‘begin’ or ‘void’), or for things like numbers and identifiers. We can then make one big
FSA for all the language elements by combining the multiple small FSAs into one that has

8

• a starting state withε-transitions to the start states of the element automata, and
• from each of the accepting states anε-transition back to the start state.

s

s

s

s

s

s s s

s

s s

s

E N D

B E G I N

0–9

a-z

a-z, 0-9

ε
ε

.

ε

Exercise 4. Write a DFA that can parse Fortran arithmetic expressions. In
Fortran, exponentiation is written like2**n . It is also not allowed to have
two operators in a row, so2×−3 is notated2*(-3) .

There is a problem with theε-transition from the final state to the initial state in the above
NFA. This transition should only be taken if no other transitions can be taken, in other
words, if the maximal string is recognized. For instance, most programming languages al-
low quote characters inside a quoted string by doubling them: ‘"And then he said ""Boo!""" ’.
The final state is reached three times in the course of this string; only the last time should
the jump back be taken.

However, sometimes finding the maximum matched string is not the right strategy. For
instance, in most languages,4.E3 is a floating point number, but matching theE after the
decimal point is not necessarily right. In Fortran, the statementIF (4.EQ.VAR) ...
would then be misinterpreted. What is needed here is one token ‘look-ahead’: the parser
needs to see what character follows theE.

At this point it would be a good idea to learn the Unix toollex.

Syntax parsing.

Programming languages have for decades been described using formal grammars. One
popular way of notating those grammars is Backus Naur Form, but most formalisms are
pretty much interchangable. The essential point is that the grammars are almost invariably
of the context-free type. That is, they have rules like

〈function call 〉 −→ 〈function name 〉 (〈optargs 〉)
〈optargs 〉 −→ empty| 〈args 〉
〈args 〉 −→ word | word , 〈args 〉

The second and third rule in this example can be generated by a regular grammar, but the
first rule is different: when the opening parenthesis is matched, the parser has to wait an
unlimited time for the closing parenthesis. This rule is of context-free type.

It is important to keep some distinctions straight:

9

• A grammar has a set of rules, each indicating possible replacements during a deriva-
tion of a string in the language. Each rule looks likeA → α.

• A derivation is a specific sequence of applications of rules; we denote each step in
a derivation asα ⇒ β, whereβ can be derived fromα by application of some rule.
The derivation of some stringα is a sequence of step such thatS ⇒ · · · ⇒ α; we
abbreviate this asS ⇒∗ α.

• Ultimately, we are interested in the reverse of a derivation: we have a string that we
suspect is in the language, and we want to reconstruct whether and how it could be
derived. This reconstruction process is called ‘parsing’, and the result often takes the
form of a ‘parse tree’.

We will first give some properties of context-free languages, then in section 6 we will
discuss the practical parsing of context-free languages.

5 Context-free languages

Context-free languages can be defined as the output of a particular kind of grammar (the left
side can only consist of a single nonterminal), or as the set of string accepted by a certain
kind of automaton. For languages of this type, we use a Pushdown Automaton (PDA) to
recognize them. A PDA is a finite-state automaton, with some scratch memory that takes
the form of a stack: one can only push items on it, and inspect or remove the top item. Here
we will not give an equivalence proof.

An example of a language that is context-free but not regular is{anbn}. To parse this, the
automaton pushesas on the stack, then pops them when it finds ab in the input, and the
string is accepted if the stack is empty when the input string is fully read.

5.1 Pumping lemma

As with regular languages (section 3.4), there is a way to characterize the strings of a
context-free language.

Theorem 2 Let L be a context-free language, then there is an n so that all strings α in L
longer than n can be written as α = uvwxy, such that for any k the string uvkwxky is also
in the language.

The proof is as before: the derivation of a sufficiently long string must have used the same
production twice.

S

��
��

HH
HH

u A
�� HH

v A

w

x

y

10

5.2 Deterministic and non-deterministic PDAs

As with Finite State Automata, there are deterministic and non-deterministic pushdown
automata. However, in this case they are not equivalent. As before, any DPA is also a NPA,
so any language accepted by a DPA is also accepted by a NPA. The question is whether
there are languages that are accepted by a NPA, and that are not accepted by a DPA.

A similar example to the language{anbn} above is the language over an alphabet of at
least two symbolsL = {ααR}, whereαR stands for the reverse ofα. To recognize this
language, the automaton pushes the stringα on the stack, and pops it to match the reverse
part. However, the problem is knowing when to start popping the stack.

Let the alphabet have at least three letters, then the languageLc = {αcαR|c 6∈ α} can
deterministically be recognized. However, in absence of the middle symbol, the automaton
needs anε-transition to know when to start popping the stack.

5.3 Normal form

Context-free grammars have rules of the formA → α with A a single nonterminal andα
any combination of terminals and nonterminals. However, for purposes of parsing it is
convenient to have the rules in a ‘normal form’. For context-free grammars that is the form
A → aα wherea is a terminal symbol.

One proof that grammars can always be rewritten this way uses ‘expression equations’. Ifx
andy stand for sets of expressions, thenx + y, xy, andx∗ stand for union, concatenation,
and repetition respectively.

Consider an example of expression equations. The scalar equationx = a + xb states that
x contains the expressions ina. But then it also containsab, abb, et cetera. One can verify
thatx = ab∗.

The equation in this example had a regular language as solution; the expressionx = a +
bxc does not have a regular solution.

Now letx be a vector of all non-terminals in the grammar of a context-free language, and
let f be the vector of righthandsides of rules in the grammar that are of normal form. We
can then write the grammar as

xt = xtA + f t

where the multiplication withA describes all rules not of normal form.

Example:

S → aSb|XY |c
X → Y Xc|b
Y → XS

⇒ [S, X, Y] = [S, X, Y]

 φ φ φ
Y φ S
φ Xc φ

 + [aSb + c, b, φ]

The solution to this equation is

xt = f tA∗

which describes rules on normal form. However, we need to find a more explicit expression
for A∗.

11

Noting thatA∗ = λ + AA∗ we get

xt = f t + f tAA∗ = f t + f tB (1)

whereB = AA∗. This is a grammar on normal form. It remains to work out the rules
for B. We have

B = AA∗ = A + AAA∗ = A + AB
These rules need not be of normal form. However, any elements ofA that start with a
nonterminal, can only start with nonterminals inx. Hence we can substitute a rule from
equation (1).

6 Parsing context-free languages

The problem of parsing is this:

Given a grammarG and a stringα, determine whether the string is in the
language ofG, and through what sequence of rule applications it was derived.

We will discuss theLL andLR type parser, which correspond to a top-down and bottom-up
way of parsing respectively, then go into the problem of ambiguity

6.1 Top-down parsing:LL

One easy parsing strategy starts from the fact that the expression has to come from the start
symbol. Consider the expression2*5+3 , which is produced by the grammar

Expr−→ number Tail
Tail −→ ε | + number Tail| * number Tail

In the following analysis the stack has its bottom at the right

initial queue: 2 ∗ 5 + 3
start symbol on stack: Expr
replace number Tail
match ∗ 5 + 3 Tail
replace * number Tail
match 5 + 3 number Tail
match + 3 Tail
replace + number Tail
match 3 number Tail
match ε Tail
match

The derivation that we constructed here is

E ⇒ n T ⇒ n ∗ n T ⇒ n ∗ n + n T ⇒ n ∗ n + n

that is, we are replacing symbols from the left. Therefore this kind of parsing is called
LL parsing: read from left to right, replace from left to right. Because we only need to look
at the first symbol in the queue to do the replacement, without need for further ‘look ahead’
tokens, this isLL(1) parsing.

But this grammar was a bit strange. Normally we would write

12

Expr−→ number| number + Expr| number * Expr

If our parser can now see the firsttwo symbols in the queue, it can form

initial queue: 2 ∗ 5 + 3
start symbol on stack: Expr
replace number * Expr
match 5 + 3 Tail
replace number + Expr
match 3 Expr
replace 3 number
match ε

This is calledLL(2) parsing: we need one token look ahead.

6.1.1 Problems withLL parsing

If our grammar had been written

Expr−→ number| Expr + number| Expr * number

anLL(k) parser, no matter the value ofk, would have gone into an infinite loop.

In another way too, there are many constructs that can not be parsed with anLL(k) parser
for any k. For instance if bothA<B andA are legal expressions, whereB can be of
arbitrary length, then no finite amount of look-ahead will allow this to be parsed.

6.1.2 LL and recursive descent

The advantages ofLL(k) parsers are their simplicity. To see which rule applies at a given
point is a recursive-descent search, which is easily implemented. The code for finding
which rule to apply can broadly be sketched as follows:

define FindIn(Sym,NonTerm)
for all expansions of NonTerm:

if leftmost symbol == Sym
then found

else if leftmost symbol is nonterminal
then FindIn(Sym,that leftmost symbol)

This implies that a grammar isLL-parsable if distinct rules for some non-terminal can not
lead to different terminals. In other words, by looking at a terminal, it should be clear what
production was used.

The LR parsers we will study next are more powerful, but much more complicated to
program. The above problems withLL(k) are largely non-existent in languages where
statements start with unique keywords.

6.2 Bottom-up parsing: shift-reduce

In this section we will look at the ‘bottom-up’ parsing strategy, where terminal symbols are
gradually replaced by non-terminals.

13

One easily implemented bottom-up parsing strategy is called ‘shift-reduce parsing’. The
basic idea here is to move symbols from the input queue to a stack, and every time the
symbols on top of the stack form a right hand size of a production, reduce them to the left
hand side.

For example, consider the grammar

E−→ number| E + E | E * E

and the expression2∗5+3. We proceed by moving symbols from the left side of the queue
to the top of the stack, which is now to the right.

stack queue
initial state: 2 ∗ 5 + 3
shift 2 *5+3
reduce E *5+3
shift E* 5+3
shift E*5 +3
reduce E*E +3
reduce E +3
shift, shift, reduce E+E
reduce E

(Can you tell that we have ignored something important here?)

The derivation we have reconstructed here is

E ⇒ E + E ⇒ E + 3 ⇒ E ∗ E + 3 ⇒ E ∗ 5 + 3 ⇒ 2 ∗ 5 + 3
which proceeds by each time replacing the right-most nonterminal. This is therefore called
a ‘rightmost derivation’. Analogously we can define a ‘leftmost derivation’ as one that
proceeds by replacing the leftmost nonterminal.

For a formal definition of shift-reduce parsing, we should also define an ‘accept’ and ‘error’
action.

6.3 Handles

Finding the derivation of a legal string is not trivial. Sometimes we have a choice between
shifting and reducing, and reducing ‘as soon as possible’ may not be the right solution.
Consider the grammar

S−→ aAcBe
A −→ bA | b
B −→ d

and the stringabbcde . This string can be derived (writing the derivation backwards for a
change) as

abbcde⇐ abAcde⇐ aAcde⇐ aAcBe⇐ S.

However, if we had started

abbcde⇐ aAbcde⇐ aAAcde ⇐?

14

we would be stuck because no further reductions would be applicable.

The problem then is to know where to start replacing terminal symbols and, later in the
derivation, non-terminals. The shift-reduce strategy of the previous section is here seen to
lead to problems, so some extra power is needed. We introduce the concept of ‘handle’
as a formal definition of ‘the right production and place to start reducing’. The following
definition is totally unhelpful:

If S ⇒∗ αAw ⇒ αβw is a right-most derivation, thenA → β at the position
afterα is a handle ofαAw.

Clearly, if we can identify handles, we can derive a parse tree for a given string. However,
the story so far has not been constructive. Next we will look at ways of actually finding
handles.

6.4 Operator-precedence grammars

It is easy to find handles if a grammar is of an ‘operator grammar’ form. Loosely, by this
we mean that expressions in the language look like expression-operator-expression. More
strictly, we look at grammars where there are never two adjacent nonterminals, and where
no right hand side isε. We also assume that precedence relations between operators and
terminals are known.

Let us look again at arithmetic expressions; we will introduce relations op1 l op2 if the
first operator has lower precedence, and op1 m op2 if it has higher precedence. If the two
operators are the same, we use predence to force associativity rules. For instance, right
associativity corresponds to definitions such as+ m +.

For the+ and∗ operators we then have the following table:
number + ×

number m m
+ l m l
× l m m

Now we can find a handle by scanning left-to-right for the firstm character, then scanning
back for the matchingl. After reducing handles thus found, we have a string of operators
and nonterminals. Ignoring the nonterminals, we insert again the comparisons; this allows
us to find handles again.

For example,5 + 2 ∗ 3 becomesl5 m + l 2 m ∗ l 3m; replacing handles this becomes
E + E ∗E. Without the nonterminals, the precedence structure isl + l ∗m, in which we
find lE ∗Em as the handle. Reducing this leaves us withE +E, and we find that we have
parsed the string correctly.

This description sounds as if the whole expression is repeatedly scanned to insert prece-
dence relations and find/reduce handle. This is not true, since we only need to scan as far
as the right edge of the first handle. Thus, a shift/reduce strategy will still work for operator
grammars.

15

6.5 LR parsers

We will now consider LR parsers in more detail. These are the parsers that scan the input
from the left, and construct a rightmost derivation, as in the examples we have seen in
section 6.2. Most constructs in programming languages can be parsed in an LR fashion.

An LR parser has the following components

• A stack and an input queue as in the shift-reduce examples you have already seen in
section 6.2. The difference is that we now also push state symbols on the stack.

• Actions ‘shift’, ‘reduce’, ‘accept’, ‘error’, again as before.
• An Action andGoto function that work as follows:

– Suppose the current input symbol isa and the state on top of the stack iss.
– If Action (a, s) is ‘shift’, thena and a new states′ = Goto(a, s) are pushed

on the stack.
– If Action (a, s) is ‘reduceA → β’ where |β| = r, then 2r symbols are

popped from the stack, a new states′ = Goto(a, s′′) is computed based on the
newly exposed state on the top of the stack, andA ands′ are pushed. The input
symbola stays in the queue.

An LR parser that looks at the firstk tokens in the queue is called an LR(k) parser. We will
not discuss this issue of look-ahead any further.

It is clear that LR parser are more powerful than a simple shift-reduce parser. The latter
has to reduce when the top of the stack is the right hand side of a production; an LR parser
additionally has states that indicate whether and when the top of the stack is a handle.

6.5.1 A simple example of LR parsing

It is instructive to see how LR parsers can deal with cases for which simple shift/reduce
parsing is insufficient. Consider again the grammar

E−→ E + E | E * E

and the input string1 + 2 ∗ 3 + 4. Give the+ operator precedence 1, and the* operator
precedence 2. In addition to moving tokens onto the stack, we also push the highest prece-
dence seen so far. In the beginning we declare precedence 0, and pushing a non-operator
does not change the precedence.

Shift/reduce conflicts are now resolved with this rule: if we encounter at the front of the
queue a lower precedence than the value on top of the stack, we reduce the elements on top
of the stack.

1 + 2 ∗ 3 + 4 push symbol; highest precedence is 0
1 S0 +2 ∗ 3 + 4 highest precedence now becomes 1
1 S0 + S1 2 ∗ 3 + 4
1 S0 + S1 2 S1 ∗3 + 4 highest precedence becoming 2
1 S0 + S1 2 S1 * S2 3 + 4
1 S0 + S1 2 S1 * S2 3 S2 +4 reduce becauseP(+) < 2
1 S0 + S1 6 S1 +4 the highest exposed precedence is 1
1 S0 + S1 6 S1 + S1 4
1 S0 + S1 6 S1 + S1 4 S1 at the end of the queue we reduce

16

1 S0 + S1 10S1

11

Even though this example is phrased very informally, we see the key points:

• only the top of the stack and the front of the queue are inspected;
• we have a finite set of rules governing shift/reduce behaviour.

As we shall see, this mechanism can also identify handles.

6.5.2 States of an LR parser

An LR parser is constructed automatically from the grammar. Its states are somewhat com-
plicated, and to explain them we need a couple of auxiliary constructs.

item An ‘item’ is a grammar rule with a location indicated. From the ruleA → B Cwe
get the itemsA → •B C, A → B •C, A → B C•. The interpretation of an item will
be that the symbols left of the dot are on the stack, while the right ones are still in
the queue. This way, an item describes a stage of the parsing process.

closure The closure of an item is defined as the smallest set that
• Contains that item;
• If the closure contains an itemA → α •B β with B a nonterminal symbol,

then it contains all itemsB → •γ. This is a recursive notion: ifγ starts with a
non-terminal, the closure would also contain the items from the rules ofγ.

The states of ourLR parser will now be closures of items of the grammar. We motivate
this by an example.

Consider now an itemA → β1•β2 in the case that we have recognizedαβ1 so far. The item
is calledvalid for that string, if a rightmost derivationS ⇒∗ αAw ⇒ αβ1β2w exists. If
β2 = ε, thenA → β1 is a handle and we can reduce. On the other hand, ifβ2 6= ε, we have
not encountered the full handle yet, so we shiftβ2.

As an example, take the grammar

E−→ E+T | T
T −→ T*F | F
F−→ (E) | id

and consider the partially parsed stringE+T* . The (rightmost) derivation

E ⇒ E + T ⇒ E + T ∗ F

shows thatT → T* •F is a valid item,

E ⇒ E + T ⇒ E + T ∗ F ⇒ E + T ∗ (E)
givesF → •(E) as a valid item, and

E ⇒ E + T ⇒ E + T ∗ F ⇒ E + T ∗ id
givesF → •id as a valid item.

17

6.5.3 States and transitions

We now construct the actual states of our parser.

• We add a new start symbolS’ , and a productionS′ → S.
• The starting state is the closure ofS′ → •S.
• The transition functiond(s, X) of a states and a symbolX is defined as the closure

of
{A → α X• β|A → α •X β is in s}

• The ‘follow’ of a symbol A is the set of all terminal symbols that can follow its
possible expansions. This set is easy to derive from a grammar.

Here is an example

We construct the states and transition for the grammar
S−→ (S)S| ε

which consists of all strings of properly matched left and right parentheses.
Solution: we add the productionS′ → •S. We now find the states
1. {S′ → •S, S → •(S)S , S → •}
2. {S′ → S•}
3. {S → (•S)S , S → •(S)S , S → •}
4. {S → (S •)S }
5. {S → (S) •S, S → •(S)S , S → •}
6. {S → (S)S •}
with transitions

d(0, S) = 1
d(0,′ (′) = 2
d(2, S) = 3
d(2,′ (′) = 2
d(3,′)′) = 4
d(4, S) = 5
d(4,′ (′) = 2

The only thing missing in our parser is the function that describes the stack handling. The
parsing stack consists of states and grammar symbols (alternating). Initially, push the start
state onto the stack. The current state is always the state on the top of the stack. Also, add
a special endmarker symbol to the end of the input string.

Loop:
(1) if the current state containsS′ → S•

accept the string
(2) else ifthe current state contains any other final itemA → α•

pop all the tokens inα from the stack, along with the corresponding states;
let s be the state left on top of the stack: pushA, pushd(s,A)

(3) else ifthe current state contains any itemA → α •x β,
where x is the next input token

let s be the state on top of the stack: pushx , pushd(s,x)
elsereport failure

Explanation:

18

1. If we have recognized the initial production, the bottom-up parse process was suc-
cessful.

2. If we have a string of terminals on the stack, that is the right hand side of a produc-
tion, replace by the left hand side non-terminal.

3. If we have a string of terminals on the stack that is thestart of a right hand side, we
push the current input symbol.

Exercise 5. Give the states and transitions for the grammar
S−→ x
S−→ (L)
L −→ S
L −→ L S

Apply the above parsing algorithm to the string(x,x,(x)) .

The parsers derived by the above algorithm can only handle cases where there is no ambigu-
ity in condition(3). The class of grammars recognized by this type of parser is calledLR(0)
and it is not very interesting. We get the more interesting class ofSLR(1) by adding to con-
dition (2) the clause that the following symbol is in the follow ofA. Another similar class,
which is the one recognized byyacc, is LALR(1).

6.6 Ambiguity and conflicts

The problem of finding outhow a string was derived is often important. For instance, with
a grammar

〈expr 〉 −→ 〈number 〉 | 〈expr 〉 + 〈expr 〉 | 〈expr 〉 × 〈expr 〉

the expression2 + 5 ∗ 3 is ambiguous: it can mean either(2 + 5) ∗ 3 or 2 + (5 ∗ 3).
*

��� HHH

+
�� HH

2 5

3

+

��� HHH

2 *
�� HH

5 3
An LR parser would report a ‘shift/reduce conflict’ here: after2 + 5 has been reduced to
<expr> + <expr> , do we reduce that further to<expr> , or do we shift the minus,
since<expr> - is the start of a legitimate reducible sequence?

Another example of ambiguity is the ‘dangling else’ problem. Consider the grammar

〈statement 〉 −→ if 〈clause 〉 then〈statement 〉
| if 〈clause 〉 then〈statement 〉 else〈statement 〉

and the string

if c 1 then if c 2 then s 1 else s 2

This can be parsed two ways:

19

S

�������

�
��

@
@@

PPPPPPP

If Then S
�� HH

If Then

Else

S

�
���

��

H
HHH

HH

If Then S

�
���

H
HHH

If Then Else
Does theelse clause belong to the firstif or the second?

Let us investigate the first example. We can solve the ambiguity problem in two ways:

• Reformulate the grammar as
〈expr 〉 −→ 〈mulex 〉 | 〈mulex 〉 + 〈mulex 〉
〈mulex 〉 −→ 〈term 〉 | 〈term 〉 × 〈term 〉
〈term 〉 −→ number

so that the parser can unambiguously reconstruct the derivation,
expr

��
���

HH
HHH

mulex

term

2

+ mulex

�
��

H
HH

term

5

* term

3
or

• Teach the parser about precedence of operators. This second option may be easier to
implement if the number of operators is large: the first option would require a large
number of rules, with probably a slower parser.

Exercise 6. Rewrite the grammar of the second example to eliminate the
dangling else problem.

Since we are not used to thinking of keywords such asthen in terms of precedence, it is
a better solution to eliminate the dangling else problem by introducing afi keyword to
close the conditional. Often, however, ambiguity is not so easy to eliminate.

Exercise 7. In case of a shift-reduce conflict, yacc shifts. Write an example
that proves this. Show what this strategy implies for the dangling else problem.

Another type of conflict is the ‘reduce/reduce conflict’. Consider this grammar:

A −→ B c d | E c f
B −→ x y
E −→ x y

20

and the input string that startsx y c .

• An LR(1) parser will shiftx y , but can not decide whether to reduce that toB or E
on the basis of the look-ahead tokenc .

• An LR(2) parser can see the subsequentd or f and make the right decision.
• An LL parser would also be confused, but already at thex . Up to three tokens (x y

c) is unsufficient, but anLL(4) parser can again see the subsequentd or f .

The following grammar would confuse anyLR(n) or LL(n) parser with a fixed amount of
look-ahead:

A −→ B C d | E C f
B −→ x y
E −→ x y
C −→ c | C c

which generatesx y cn {d|f}.

As usual, the simplest solution is to rewrite the grammar to remove the confusion e.g.:

A −→ BorE c d | BorE c f
BorE −→ x y

or assuming we left-factorise the grammar for anLL(n) parser:

A −→ BorE c tail
tail −→ d | f
BorE −→ x y

Another example of a construct that is not LR parsable, consider languages such as Fortran,
where function calls and array indexing both look likeA(B,C) :

〈expression 〉 −→ 〈function call 〉 | 〈array element 〉
〈function call 〉 −→ name (〈parameter list 〉)
〈array element 〉 −→ name (〈expression list 〉)
〈parameter list 〉 −→ name| name , 〈parameter list 〉
〈expression list 〉 −→ name| name, 〈expression list 〉

After we pushB on the stack, it is not clear whether to reduce it to the head of a param-
eter list or of an expression list, and no amount of lookahead will help. This problem can
be solved by letting the lexical analyzer have access to the symbol table, so that it can
distinguish between function names and array names.

21

Contents
1 Introduction 1
2 Structure of a yaccfile 1
3 Motivating example 1
4 Definitions section 3
5 Lex Yacc interaction 3
5.1 The shared header file of

return codes 4
5.2 Return values 4
6 Rules section 5
6.1 Rule actions 5
7 Operators; precedence and

associativity 6

8 Further remarks 6
8.1 User code section 6
8.2 Errors and tracing 6
8.3 Makefile rules for yacc 8
8.4 The power of yacc 8
9 Examples 9
9.1 Simple calculator 9
9.2 Calculator with simple

variables 11
9.3 Calculator with dynamic

variables 12

22

	 Levels of parsing
	 Very short introduction
	 Languages
	 Automata
	 Automata

	Lexical analysis
	 Finite state automata and regular languages
	 Definition of regular languages
	 Non-deterministic automata
	 The NFA of a given language
	 Examples and characterization
	 Deterministic automata
	 Equivalences

	 Lexical analysis with FSAs
	Syntax parsing
	 Context-free languages
	 Pumping lemma
	 Deterministic and non-deterministic PDAs
	 Normal form

	 Parsing context-free languages
	 Top-down parsing: LL
	 Bottom-up parsing: shift-reduce
	 Handles
	 Operator-precedence grammars
	 LR parsers

